
ERFORMANCE EVALUATION OF ULT IPROCESSOR STEMS

2R -E

CONTAININC SPECIAL PURPOSE PROCESSOR~

by

JaneW. S~LiuJUL 30 1981f
-~ Chuncr.(LUu <01

Departmnent of Computer Science E -

Univers ity of Ii1inols
Urbana, Illinois

and

Nabiuyoshi/miyazaki

Haruak i/Y amazaki

N, ~OKI Electric :.ndustry Company, Ltd.

Tokyo, Japan

7n.. .,ork .as ".' Z2Zz : .iaval~ Research

Approved for Public releae;

81? 305
~<058

Best
Available

Copy

Abstract
,/

The relative merits of two different types of multiprocessor

systems are compared in terms of their effective processing capabi1i-

ties. These two types of multip essors are (0 one which contains
general purpose processors and (i) the other which contains special

purpose processors. A deterministic model and queueing theoretical

models of these systems are described. The potential performance im-

provement by multitasking is discussed in te ms of the number of

processors and the degree of concurre.ncy in jobs.

Accession For
NTIS GRA&I
DTIC TAB
Unannounced
J i±fi tic

Distribut ion/-
Availability Codes

Avail and/or
Dist Special

PP

-2-

1. introduction

In recent years, progress in hardware :echnology and system architec- -

ture has made the design and implemntation of large and complex rultipro-
cessor systems possible. By a multiprtcessor system, we mean specificaliy

here a computer system which contains two or more closely coupled proces-
sors and is in the category of MDM (Multiple Instruction Stuams, Multiple
Data Stream) systems. The architectural differences among these systems can

be characterized in many different ways (I]. Here, we classify multiproces-
sor systenz according to the types of processors in the system. Some multi-
processor systems consist of identical general purpose processors which
share the input job load. Examples of this type c f multiprocessor systems

include nost of well know multiprocessors and closely-coupled computer net-
works such as IBM 360/65 or 370 MP, Burroughs B 5500 [23, c.mhm.p. [3] and

"RE .]. Other multiprocessor systems contains special purpose processors
(or functionally dedicated) each of which is designed or progw ed to per-
torm efficiently a particular type of functions. The types of special pur-
pose processors which have received a great deal of attention in recent years
include front-end comunication processors designed to deal with input and
output of low speed data and line control procedures, back-end processors
(or computers) designed to relieve the host system tasks involved in Mrnage-
ment of daza bases, array processors, intelligent graphics terminals, sort-

merge processors, etc. designed to perform special functions with s.eeds

norrally unachievable using general puro.se hardwares. AS a Matter of fact,
one con=ionly used technique to capitalize the cost/performance potential

of VLSI components is zo build powerful special pupose processors and use
hem as attached processors to existing com.puting systems. Thus, certain

runc:ions may be off-loaded for more efficient execution.

Clea.ry, for a mutiprccessor system containing spec.a pun se pro-
* cessors to!have ccmparable cost/performance characteristics, it mus- have

some architectural merizs (such as, fast rrocessor speed, more reliable com-
=uicazion paths, etc;) to compensate for the potential lack of such des-'-

able features as fail-softness, ex-an,'abilit-, .rniaiabilit.y etc. , pro-I vided through c'edundancy in a system contailing general urose -rocessors.

rIt is difficult to compare the relative merits of the tWo types of Multi-

processor systems in terms of these criteria in general. In t1iS paper,

we are concerned with their relative merits when they are compared in

2 terms of their effective processing capabilities. Using a deterministic

model and several approximate queueing theoretical models of multiproces-

sor systems, their relative perfozance are compared using various mea-

sures of effectiveness.

In Section II, a general deterministic model of multiprocessor sys-

tems is described. in this model, each type of special purpose processors

is further divided into subtypes with a partial ordering relation defined

over the processor subt-ypes. Thus multiprocessor systems in which some

processors are functionally identical but have dedicated memories of diffe-

rent sizes can also be model2ed. This model is used to obtaini a worst case

bound on the performnce of priority driven scheduling algorithms.

To study the performance of the two types of multiprocmssor systems

f-m another point of view, these systems are mndelled using approximate

queueing theoretical models in Section II.

A closely relazely problem is on the potential performance improve-

ment in multiprocessor systems achievable by multitasking. W&hie multitask-

ing system can be effectively rodelled with our deterministic model, the

queueing models in Section III can only be used for mu1iprogranmmd systems.

We discuss in Section IV a special queueing ,r/del of multitasking systems

and evaluate the potential gain in processing capability achievable by

multi tasking.

Section V sumnarizes our conclusions from the re-sults obtained in the

Lrevious sections.

-41

2. A general. detexnujaistic mo~del of, inultiproccessors systems

Consider a multiprocessor system of r different types of special

purpose processors. Each type of processors,'is further divided int6

subtypes. Thus, we shall 'refer to a processor as a type (j jk) processor

when it is a type j processor of subtype k.. A partial ordering relation

< is defined over the processor types such that

(i) (j,k) and (n,v) are incomparable if j On.

(ii) (j,k) < (j,v) means that if a task can be executed on a type

V (j,k) pvrocessor then it can also be executed on a type (j,v)

processor.

A miultiprocessor system can then be represented as 9:(m, ,m, 2 ,. .6ML

m~im 2 ,, 2 0 where mj, is the number of type j)
processors and is a =atial ordering relation over the processor types.

We let

.

aFor example, the nultiprocessor system represented by the directed

graph in Figure .1 contains three types of processors. There are three type

1 rccessors of the same subtype. The 3 p-rccessors of type 2 having dedicated
mnemries of different sizes. The execution of a task with cer-cain mnemowry

space requirement can -.ake place only on a processor, whose mnemory capacity
is larger than or equal. to its inemox-y requirement. In owur rdeJ., the se prceis-

sors are linearly ordered as shown. For the 4 processors of typDe 3, neither

(3,1) < (3,2) nor (3,2) < (3,1) but (3,3) < (3,1) and (3,3) < (3,D). Thi s

system can be represented as 9= (3;1,1,1;2,1,1,<).

_ _ _ _ _ p!'

Neither (4,k) < (n, v) nor (n., v) < (j,k).

There is an ecige ffrcrn (j,k) to (v)means (j,v) < (~)

I2

Let & : 2TiT2,...,Tn} be a set of tasks to be executed on a

system 5. A task T. is said to be a type (j,k) task if it can be exe-
1

cuted on any type ',v) processor for (j,k) < (j,v) and on no other N
type of processors. Let a be a funcrtion from to the processor types

(j,k) so that a(Ti) specifies the type 9f task T. We denote the time

required to complete a task T (on a'type (j,k) processor) by 4(Ti)

where U is a function from to the reals. ji(T i) shall be referred

to as the execution time of Ti .

We suppose that there is a precedence relation <'defined over the

set 7. That Ti precedes T. (or T. follows Ti) is written as T <'T. and

means that the execution of Tj cannot begin before the execution of Ti

is completed. A task is said to be executable at a certain time if the

tasks preceding it have been completed. Formally, a set of tasks are

represented by an ordered quad&iple (I ,c,., . We use the notation

(Tic(Ti) ,u(Ti)) be represent a particular task Ti .

Consider all type (j ,k) processors for a fixed j. The smallest sub-

set of types (Q,,k1),(jk2),...,(j,k)j is said to be the dominating set

if for any type (j,k), (j ,k) < (j,k P) for some 1 p : q. Li other words,

any type (j,k) task can be executed on a processor whose type belongs to

the dominating set. For example, in the imu.tiprocessor system shown in

Figure i. ((,1)}, {(2,1)} and {(3,1),(3,2)} are dominating sets. We also

refer to a type (j,k) as a maximal type if it is in the dcminating set.

For a given dominating set, let

M; 0 j ,kp) is in the domiraing set}. I
In other 'vrds, mo is the minim of the numbers of processors

among all types oz prccessors in the dominazing set. Therefrre, mjo is

equal to 3, 1, and i for j=!,2, a-nd 3, respectively, in o.r example.

We w n to determine the erfomer.ce of a class of scheduling al-

gorizks in which prccessors are never left idle intentionally. These

algoithuns are kov.n as priority driven scheduling algorizh-hms and can

ie descri -ed by tne priorries assignea to the tasks 151.
-" .r - sass .ed o ne sksISL

Let w and U denote the completion times of a set of tasks (,, iU,<'1

when executed on a system V Vacc ing to a priority-driven schedule and

an arbitrary schedule, respectively. The ratio of w to V' has the follow-

ing upper bound

iTo prove this inequality, let tj denote the total execution off al

!€be the total idle time in all processors. hence the completion time of

in

t he priority driven schedule is as given byA

Let I be the sum of lengths of all idle .periods during which at least

one of each maximal type processors is idle. Letsj be the sum of the por-
tion of execution yipeseof all tasks scheduled duing these
periods. There is a e ain of tasks :In T'such hat during hese

idle periods one of the oihel processors is executing a task in the ofrin.

Hence

I (m-!)w'

Moreover,

M- (2)

Lest K4 denoe he sum of lenrh s of idle periods during which all
ohe processors or cne otp roceaiors iypes of t e s(, te busy.

We have

n -Iio
,.71 - ('Cj-sA)

0

m e -eshis o-'Le i or m he _e ua i's n (2), we obtainh<-

,: :. o C -. - -r jo
'jo i M'p

-7-

since tmj s W' for jzl,2,...,r, E t./m W', and

j=1 j

+
jh n

r in.
W, [I + +

j= 11o mj=1 1Sj Sr mjo
which reduces to the bound given by Equation (1.).0

When the dominating sets contais only one subtyre for all j:1,2t... ,r,
(that is, there is an unique mLximal subtype for all types). The bound given

by (1) is the best .ossible. This fact can be demonstrated by an example

which can be found in [6].

F z a system containing m identical general purpose processors, the

upper bound in (1) reduces to the well known result [7)

m

On the other hand, for a -job shop problem, m1 --=... =mr-w . In this case, we

have

Ihen the mulziprocessor system contains only one t.ype of processors,

we have mizO for i:2,3,...,r. The bound given by (M) is simply

,I - 11 cMn,,< 1 + ...- ...

The bound derived in [3 for processors with diffeent Storage capacities

is a special case of our resul- with m!=!.

3. Queueing models of multiprocessor systems

To model a muiltiprocessor system probabilistically, we assume that

the arrival process of jobs requesting.service of the system is Poisson

with parameter X. Each job way be decomposed into a number of different

tasks. There are altogether r different types of tasks. (For example,

consider a system in which some jobs are decomposed into an input task

followed by compilation, computation and output tasks while the other

jobs are decomposed into input, sorting and merging, and output tasks.

in this case, there are 5 different types of tasks). We way that these

tasks are generated by the job. Let Ni denote the number of tasks of

type i and N be the total number of tasks generated by a job. We assume

that Ni's are statistically independent random variables.

It is sufficient to consider the relative speeds of the processors.
We c=ose to measure the speeds 6f special purpose processors with res-

pect to the speed of a general purpose processor. In particular, we call

the relative speed of a special purpose processoti with respect to a gene-
ral purpose processor the capacity of the special purpose processor. For

example, if a task takes 1/iu units of time to be completed by a general
purpose processor, then it takes (I/u)(i/C) units of time to be completed

by a processor with capacity C.

We refer to the tima required to complete a task in a system as the

execution time (or ser-i-ce time) of the task in that system. In particu-

lar, the execution time of the task on a general purpose processor is
called t1he amount of work for that task. ence, if a special zur.ose pro-
cessor with capacity C completes the given task within t sec, hen the

amzount of work for tiat task in t . C u,its.

4e measure the effectiveness of a mtiprccessor system by the average

total amount of work rE2anng in the system in statistical equilibrium.

.hat is, the -.oal time required for a general p--pose processor to complete

all tasks beingC sewed and tai-na for service Ln the system. This .erfor-

wance measure is chosen since i does not depend the queuedng= discipline

used to schedule the -sks in the system.

ii}

3.1. Systems with indetendent input prvcesses

When the tasks generated by jobs are independent 3 , we apprvoximate
the arrival processes of different types of tasks by independent Poisson -

processes . Let Xi denote the average-arrival rate of tasks of type i.

A multiprocessor system containig m. general. purpose processors can b

approximately modelled by the M/GIm queue shown in Figure 2a. In this
case, when all processes are busy, the tasks joins a common queue (for
example, as in B SSCO C 2)). Similarly, a multiprocessor system con-
taiing r types of special purpose processors can be modelled by the

multiserver system in Figure 2b. Let mi denote the number of type i
processors (i.e., those designed to execute tasks of type i only).
These mi processors are referred to collectively as the ith subsystem.
A type i tasks joins the ith queue upon its arrival.

It is difficult to analyze the general behavior of nultiserver
queues since service times in our case are non- xponential. We consider

here several special cases

3.1.1. S .S s with one orocessor of each we

For the case where rn-m2:... -mm:, expressions for average total
aoun, of work remaining in both types of systems can be obtained easily
(93. W.en the amount of work for type i tasks is exponentially distrituted
with pa-eter u~(izI,2,...,r), the average total amount of work in the
ith subsystem with one special purpose processor of capacity C. is

.U,
system containing r special purpose processors is given by

f) In t e sense that they can be executed si.nult-aneously.

Mhlti.Vcessor sysze.s containing identical. pr-ccessors ay "e modelled-
rore accrately by -he M/qm bulk arrival queueing sys em discussed in
Section 1I.

-10-

ne4,

w Z I- (3)

gg
!iLet W be the average total amount of work remaining in a system

containing a general purpose p rceSsor.. Since the average execution time
of all tasks is equal to

r r;
Z X./U. and V. Z

1 13.i:

we have

W .. (L4)

where "Z Xi/u .

To compa the performnce of the two systems, we assume that the
capaci-cies, Ci , of the special purpose processors are chosen to minimize,
su bject to the constraint Ci C. Thie values of C, that miile

Ws are given byi=

C;- : + (C-0) Z C--Ui Ii i=1

For these values of C., Ws in Equation (3) beccmes
s

s5 C-

k-breover, Wso W . as long as the total capacity of all special pur-pose
processors, C, is such zhaz

C (1-o) (r /')2 / (-/'2 + QCZ+

"his resu!z indicates that in order for a system contalning special our-
DO-e processorsg spcil oeeualyr--,"
Pose processors to be equall~y etre we as a system containing general

processors, the special purpose processors must be made sufficiently fast.

-.-.2. Sv-ts with arbit-a number or arccessors

To ccmare -he ef:ecZiveness of sys-ems .ontaining arbirary number of

prOcessors of each z-,pe, we consider --, arnalytically tractabie cases

(i) Deterministic task execution time

In particular, the amounts of work required for all tasks are cons-

tant and identical. ithout loss of generality, let the amount of work

required by a task be one unit of time or a time slot. If the average

interarrival time of jobs is sufficiently long compared with this time

slot, then we can approximate the exponential distribution of irterarri-
val time by a gecmtric distribution. We assume that the job scheduler

assigns tasks to the processors at the beginning of each time slot. If

n is the nth epoch of this time slot, the total number of. tasks at

.n+O+ forms a Markov chain (and so is the total amount of remaining work

in the system at t n0+).

Let U be the probability of having i tasks in a system containing

rn general purpose processors at equilibrium. It has been shown that when

the number of processors is larger than XE(N), the average number of

tasks in the system is given by [10].

Im-2 (.i - m!M-1) 21A' (!)
i Z. 2(m-A' ()' 2(rn-A' (1))

Sr
where A(z) Z Ai(z) is the generating function mf the random variable

N! and Ai(z) ig:he generating function of N. zC z1.....'z are the
zeros of (1 - within the unit circle.

In a multiprocessor system containing r types of special purpose pro-

cessors, the execution T-ime of a type i -ask is I/C . Let BW Le the genea-

tring function of the number of tasks that arrive during the execution of a

ype i task. Clearly,

Bi(z) +I - Ai(z).

.he average number of task in the ith subsys-em, n;, is given by
&m4_-2 rn. (m. -i) 3'"(1)e; i t

';hre are_ zeros of (_z / '%.) wihin -he ,1-ni * ' c e

~- 12- ,'

Unfortunately, it is difficult to obtain the general behaviors 6f
W and'Ws except for the case where A(z) and Ai(z) are polynomials of

zA and zmi , respectively.

(ii) Tasks with expnential execution ime in systems under heavy traffic

We assume here that the amount of work, Sp, required for type i tasks
is exponentially distributed with parameters Ui" Let S = SI+S2+...+Sr ae

the total &-,nunt of work of a job . Let us denote by tn the epoch when
the nth job arrives. Let W, be the amount of work re aining at tn r
in a system containing m general .urpose processors, An be*-the amount of
work completed in the duraticn Ctn-l' n]' andB n be the amount of work

arriving at t n. Then 'n+l can be expressed as

Wi + A +Bn-An
Wn+l _- (5) P

0 ifw +Bn -A .

Under heavy traffic conditions, all m processors are busy during
[tn. tn. Therefore, An has the same distribution as mA where A is the

interarrival tune between tn jobs.

Bn has the same distribution as S. F:ence we can write Equation (5) as :

Wn + (S-mA) if + -mA z 0

wIn+i
SW+ S-wA <0

iowever, he expr-ession in the right hand side of this equaion is the

waiting -ctim 1 the (n+) job n a system which consists of one processor
with the execution ti!me of a job being S and the avezge interarrival time
betrween jobs being wA. Since

ECSi -

III

7 ,S i i 2

'-N

The mean waiting time in queue is

I(X/m) E(S2) (...L)

where

Mo~reover, the average total am~unt of wo~rk remaining,C4 i

(12. (6)
g 2 (.L~ 1 212

Similarly, in the system contain r types of specil purpose pro-
cessors under heavy traffic conditions, the average total an~unt of WOrk
reamiing in the ith sub~system, C, i qatoheargewiting

time in queue in a single processor system with interarrival time of jobs

being CimiA and the execution tiine for a job being Si. Since S; and Cim.A

are exponentially distributed, we have

IS

zizn Cm ZCnit can be £~nC10) that the values of Gitm. that mini-

mizes '_,is given by

Dutheroyre, the rnixdaum value zWs

SSO

* -14-

Tntis

0 m 2

Figure 3 shows the curves W oand Win the case of r=3, (1i) :i+1

for i=0,'1,2, C =C and m-1.0. Under heavily loaded conditions, the opt#inized,
system with special purpose processors behaves better. Even in the case

C=1 (i.e., no improvement of processor speed) ,'the value of G sois almost
comparabla to that of R 9 . This result is an expected one'since the flexi- r
bility in scheduling does not make mu.ch difference under heavily loaded
conditions.

Figure ~4 describes another case where r zzm :3, (1) (0),
C Cfor i=0$1,2. Thierefore, m,=1 for all i. Since all subsystems con-Isist of a single processor, is not optimized in this case.f3.*2. Queueing ner.4ork modell

Theme are two methods to schedule jobs in a mu.ltiprocessor system

(W mul~tiprogram~ming and (ii) multitasking. By multiprogrammiing, one
usually means that the system -may execute more than one job simuiltaneously.

3y mutitasking, one mreans that the system nay execute tasks in a job concur-
rently if the job can be divided into independently executable tasks. t'&iti-
processor systems without multitasking can be modelled using queueing net-
w;orks. 'We model a auIciorccessor systems containing special purp-ose pro-
cessors arpproximazelv, as an open netwNork of Jackson seilvers. Let
R.- be the probabiliry of a t:ask of type j is to be executed after the ccm-
plet2.on of a task of tzype i4. Let f; .-be -the probability that the first -cask
to be performed for a jo i of typ ,te the arrival rate, I.,, of tasks

-Azcording tco Jackson's theorem -When X./m.C~ < 1 for all i, the ecui-

librium :)rofabi_'ty7 or in;in 7asks in subsystem i is given by

,!" :i--

p1(nl) p2(n2) ... Pr(nr)

where pi(ni) is the equilibrium, probability of finding ni tasks in ~an

M/M/m i queue with input rate Xi and average execution time 1/uiC. Hehce, -

for a given set of Xi, our results described above are still vaiid

here.

A special case of interest is one where each job generates r dif-
ferdnt types of tasks that rmst be executed in fixed sequence as in a

pipelined system. tn this case, a system consisting of special purpose

processors can be modelled by a series of r M/M/m i queues. With the
average execution time of a job on a processor in the ith subsystem

being i/uiCi , the average amount of work r~eirining in the subsystem

containing mi type i processors is

:
S i Ui u,

where P'- X/Cimiwu. Hence the average amount of work. reining for all
jobs in the ith subsystem is

where ni is the average number of jobs in the ith system. Sinceni-oi/("-pi);

we have

"]s- : -k. -

The average total nmtber cf wcrk r.inng In the pipelind miltiprccessor

system is

Note that in a system with m general purpose processors, the processors

are not connected in pipeline. Fer.ce the expressions for W in Equation (6)
is valid here also in heamy loadi-g condition.

Figue 5 describes the behavior of W and , the case of r m 3,
0 c and (--) (C. 9) 0, ,2.

-16-

4. Perforrance of multiprocessors sytems with multitasking

Generally, jobs may contain independent and thus concurrently exe-

cutable tasks. Both turn arround time and system resource utilization

in multiprocessor system tay often be improved by allowing processors

to execute in parallel tasks identified either by progranmers of the

jobs or by the compiler system to be concurrently executable. In this

section, we want to determine the potential performance improvement by

Multitasking. Unfortunately, the models used in Section I and III ame

deficient in one way or another for this purpose. In the deterministic

model, the structures within an individual job are effectively described

in the general model of a task set. However, all jobs have the same struc-

ture and, more restrictively, are assumed to arrive for service at the

same time. On the other hand, in the queueing models used in Section 1II,

the issue of task synchronization is completely ignored. The model des-

cribed in Figure 2 can be used only in the case where jobs consist of inde-

pendent tasks while queueing network models of multiprocessor systems can
be used only for systems without multitasking.

Wben the degree of concurrency is small (=2),the model in [11) can be
used. However, the case with degree of concurrency being two is not an inte-

resting one since it has been shown that multitasking is not a good way

to make effective use of multiprocessor system resources when the number

of processors is small. This result is :Iue t-o the facZ that negative
of larger overhead. On the other hand, it is said that m ltitasking

is essential tor a .muziprocessor system containing a large number of pro-

cessors [12 .

We s-udy here -he dependency of potential improvemenz achievable by

mlatitaski n on the degree of concu.rrency and number of processors. For

-chis purpose, we discuss firs- the type of job structures considered here

and -hen a mdel of mulziprccessor systems with multitasking.

'4.1. Job str-ictires

Simi-a .o our de:e=niszi: ndel, the szructures of jobs can be

described by a probabilistic mcdel represented graphically as shcwn in

Fiure 5a. Lh thi s gra 'ph *..' represents a -ask, '{ reDresents the -ask

- 17 -

generation (e.g. by statements such as fork, cobegin, etc.), and ''

represents the task synchronization (identified by statements such as

join, coend etc.). A job consists of many stages of tasks. A stage

is either a set of tasks in the same column between a pair of T(9 and
or a task if it is not irmediately preceded by '{'. A stage con-

sists of a random number of tasks, and service times of tasks in each
stage are stochastically indepeiident. Tasks in the same stage can be
executed independently. Tasks in an inner stage (i.e., tasks in inner
brackets) are considered as a part of an outer stage. The execution of

tasks in the stage to the left begins before the tasks in stages to its
right. It is difficult to =odel the topological structuare'of the job,
i.e., relatons betdeen stages. Therefore, we consider here two approxi-
mate models of the job structure : (1) no synchronization model shown
in Figure 6b, and (2) full synchronization =odel shown in Figure 6c.
In no synchronization model, we assume that there is no task synchroni-
zation. A task simply disappears after being served with certain proba- p

bility, or it is followed by another stage. in full synchronization rrdel,

tasks my riot generate new tasks; they rust be synchronized immediately
after their completions. Thus there are no inner stages in a stage. No
syrchronization nodel preserves the topological str-uctnre of the job
to a certain degree, and can represent complex job structures. However, it
is difficult to keep -t:rack of a job ; one cannot use it for the purpose
of evaluation of job trn arround time. Full synchronization model reduces

the topological s~cture into simple linear stricture and is easy -to ana-
lyse. It is the rrodel of job struct",re used in the following.

4.2. Queueing model of -.a-ltirccessor systems with cmuitasking

We use oren queueing ne.rlks such as :he one shown in Figure 7 to rodel
rnUit4r1Ccesscr systems w-t- rzmltitasking. 7he nerrok has only one external

source and ore sink. Each node in the network consists .f a number of pro-

cessors and serves a szage of tasks £i a job. These processors my be of
different types if the stage which it serves consi-Ts of several classes
of tasks. After the arrival of a job to a node, tasks Ln the stage are

served concurzenzly whenever :Cs-ible. The service of a job in a node is
completed when services of al! tasks in -:he same stage ae crn .eted. The
CCmDle1ed Job proceeds -o a next node (or leave 1the net!.rk) dee-Tned

randomly with gaiven Dprobabilities. Thus a job zay be r epeatly seried by

- - V

a node. The number of tasks in a stage may vary from node to node.

In general, it is inpossible to find the probability distributiotS

of number of jobs in each node in such queueingnet~WOk. Again, we con-

sider here only one special case.

.3. A model for multitasking systems cont&ining identical processors.

Multiprocessor systems with identical general purpose pxrcessors

can be approxiirately modelled using the single node model in Figure 8.

Again, we assume that the job arrival is a Poisson process with the

average arrival rate X. Each job consists of N independent tasks with

identically distributed service times. The distribution of N is arbitrary

but has finite first and second moments. N is referred to the degree of

concurrency in the job. The service times of tasks are statis .:ally inde-

pendent, exponentially distributed with mean i/u. The job service time

is the sum of task service times, ie., S- Si+S2+...+S,. Thus the model

of multiprocessor systems is specified by a 4-,uple (\,u~mN). It is a

bulk arrival MPt/m N eueing system.

Number of tasks in system

Lez ai be the probability that N is equal to i for i-O,1,2,...

(aoO and ai ;: 0 for i'O) and A(z) the generating function of (ai}.

Let K be the number of tasks in ,/4/m bulk< arrival queueing system. K

is a Iarkov chain. Its stationary distribution {pk}, if exists, is given

by [13] m-i
(i-z)U I (m-k)pkzk

k=OI ?(z)k0
mU(!-z)-,Xz(*I-A(z))

where Uk min(ku,mu). Lept P X/u aand u XE(N)/mu. Because is a linear

function of oP1,P2,.Pk-! we wite D,, = fk -or k i5 :.. Hence
n-i k

m(1-u)(i-z) I (m-k)fk z~k-k

rn) m-i m *

m(!-)(i-z)) E (m-k)fk]

k=O

-19

The condition undei' which the stationary distribution exists is
u = XE(N)/mu < 1. It is easy to.. see that u corresponds to the utiliza-
tion factor of the processors. For m

P(z) exp{-P [(1-A(t))/(I-t)Jdt}
fz

Thus, the average number of tasks in the system is
~m-4.

~~u(I+E(N)/E(N)) E (M-k:kk. ,

E(K) = + (8)

2(1-u) m-i
E (M-k)f k

k=O

For m < w, for m -, E(K) = pEN.

Task waiting time

To find the task waiting time for FCFO (First Come Firin Serve) disci-
Diine , we. define the virtual task waiting time as the length of time a
task spends in the system (or in the queue) if it arrives at random instant.
Then it can. be shown that the distribution of the task waiting time is

the same as the distributi6n of the virtual task waiting time [C13. Thus
we can get the task waiting time by calculating the virtual task waiting

time.

Let W, be the waiting time (in -he queue) of the j-th task in a job
when we number tasks in the order of them being served. if there are k
tasks in the system just before its arrival,

9 k+j <_
:,(W-iK-) -

(k+j-m)/mu k+j > m

The above expression is obtained because all processors are busy wbile
the j-th task (in the arrived job) is waiting. Moreover, the average inter-
deoarture time is ecual to the -Linimn of the serrice time of m servlers, i.e.,
!/inj when all servers are busy. The unconditional average is,

-20-

in-]-1
m(I-a) Z (m-j6-k)fk 1[E(K) -1k-o0

ETN m E(K + (j-m) + - -
Z (m-k)fk

Sk:O

Let W be the waiting time in the systen of a task and Wq be the waiting

time in the queue of a task. Then,

j

(q > t Z a iz r:1W ()

Hence,

S i
E(W) Z aI Z E(W.)/E(N) + I/P

;=I j= J

The job waiting time

Let V be the waiting time in system for a job, i.e., the time bet-een

the ar.ival and the departure of a job. Here the departure of a job means-

the departure of the last task in a 'job to leave the system. Let ,Kr be the

number of tasks in a job still re.aining in the system when service for

the last task in the job begins. (Nbtice that the last task to be served

is not necessarily the last task to leave the system). Let Sr be the time

required to complete the service of all rezaining tasks in the job after

the service of the last task begins. The conditional average of Sr is,

E(Sr!Kr- n)
nn

-(1/ti) Z 1/i

4.1

=ecause V :r Sr where W is the waiting rime :z, queue of the last task,

M n
E(V) E(Wt) + (1/) Z ?r(Kr n) Z 1/i

n='!i=

It is D-ossible to comDute EMV) as done in [!3]. Hoever, the computa-

tion of its numerical values is not efficient. The fcllowing bounds of E(V)

-e more useful. Because E(St! H :n) is an increasing function of n and

clearly ?.C(C-n) 0 for n=O and n > a.(N,m), we have the lower bound

E(M) >_ 7(I) + V/u

and the upcer bound

rmin(j,m)
E(V) 5 E(WZ) + (i/u) E a. E 1/k

j=1 j, k=1,

Together, these bounds give us a & 6od approxination of E(V). !n order to

emphasis the fact that E(V) is a function on m, we write it as EiV). F

*4.4. Performnce improvement with ml.titasking

The queueing system may be adopted to model multiprocessor systems
with or without miltitasking in addition to uniprocessor systems with,

the same capacity as the multiprocessors (i.e., it is m times faster) by

ajusting the 4 parameters. To do so, we note first that the. performnce
of multiprocessor systems Tay be decreased by memory interference and

overhead. These effects can be taken into account by assuming that the

service time for a job increases in mItiprocessor systems. Let S be the

service time for a job in uniprocessor systems. We assume that aS and

bS are the service tim . 'or a job in multiprccessor systems with and
without multitasking respectively. The values of a and b depend on m, N

and X. Generally, i > b z 1.

In a prvc,.essor system with multitasking, a job departs only when
all tasks are completed. The 4-tuples which specifies the model for the
system is (X,iE(QN) ,r,N). Ln a multiprocessor system with rultiproanrning

but not multitasking, all tasks in a job are executed in sequence. Hence
only one processor is assigned to a job. But nany jobs may be executed
sinmiltaneously. Ln this case, the 4-tuple is (X,u/b,m,1). Similarly, for

a uniprccessor syszem the 4-tuple is (X,mtU,1,1) since the processor is m

times faster. All ecuazions in this section are expressed in ter.is of

(,\,u,m,N), where %aareters should be substituted by different parameters
for different systems. Xreover, sL-.ce Er(K) should be interpreted for

different systems, (i.e. , it is the average number of tasks for the syst-em
with milti-asking and is the average number of jobs for the system without
,-ulritasking) we c-ose again to use zhe zota-3 amount of work re'raining

Er(R), instead of £M(K) as a criterion of comrarison (E (R) is defined as

th/- recuired zime to c-m.lete all reTaining tasks (or jobs) in the system

3y a ,m~i steed :rocessor). Nc- hat EM(R) is -_Idecendent on, service dis-
cD .es (priority, etc.) Of syst-ems a!though EK) is rot. Era(R) is obtained
as foilcws (i) for a m.liOrccessor system wi-n mu-ltiasking

-22-

E (R) c-d a.E(K/NE(I
M m

1.-where E (K) is obtained from Equiation (8) by substituting (\,U~m,N) by
(XiE('Di~m,), (ii) for a multiprocessor system without multitasking

Em(R) bE (K)/iu

where Em(K) is obtained from Equation (8) for the L4-tuple (X,U/b,m,1)

(i)for a multiprocessor system

whee Z(K)is obtained from Equation (8) for the 4-tuple (X,mu,1)

The values of parameters a and b can be determined based on the study

of meirmry interference and overhead. H~ere, we assume the ideal. case, i.e.,

a b =1, in the following ccmparison. From Figure 9, we note that the

perfozrance of the uniprocessor system is the best and the performance of

the multiprocessor system without imltitasking is the worst consistency

for all E(N)O. Their difference is larger for larger value of mn. The per-

foztrnce of the mltiprocessor system with mltitasking improves for l'ar-

Ser E(N). indeed, the ;erforwnce of the =Iltiprocessor system with multi-

tasking is almo~st samre as the serfozr-wce of the uniprocessor if E(Ni) : m.

The effect of .he numter of processors on the performance of the systems

i.s shown in Figure 1.0. The traffic intensity potdi rprinlt

the number of processors. Em(R) increases as mn increases altzhoughn Z M

decreases, and the .ncreasing rate is laerger for srller E(N)l. On the other

hand, IN~() decreases as m increases and the decreasin aei larger for

larger E(N). If we assume t:-az traffic intensity is cons-tant-, toth perfor-

rw.ce measures are improved Lin all. systCems as m increases. FEowever, the

difference of performrance bet-,ee.n these systems 2.3 saller for larger u

A ___ (systam ut4 1 ization factcor).

- 23 -

S. Sugry

It is our objective here to evaluate the merits of using special pur-
pose processors in multiprocessor systems. For this purpose, we propose
several Wodels of multiprocessor systems and use them to obtain different
perforance measures which may be used as criteria for comparison of the
processing capabilities of the two types of multiprocessor systems.

The general deterministic model of multiprocessor system.described
in Section 11 include as special cases many ndals (e.g. ,pdels of sys-
tem with identical processors, processors of different size memories and
diferent processors in job shop problems) used in previous sMudies.
We many conclude from the result in Sev.' ion i that according to a prio-
rity driven schedule, the completion tL a of a set of tasks executed
on a system containing r types of processors can be very poor for large r.
The relative inferior ;erforance of multiprocessor systems containing
special purpose processors is clearly due to the loss in scheduling
Flexibiliy in such systems. When such a system is used in real-time
environments, scheduling algorithms with better worst case behavior than
arbitary priority driven schedule need to be found.

To determine :he minimum ratio berween the speeas of special purpose
prcessors and general purpose processors to achieve the same overall
system capabi4 iies, Several approxnmate queueing models are proposed.
Using the total amount of reraining work in system as a basis of comra-
ri son, ':he t.o ty-es of i.ul iprccesscr syszems are c-cmered quantitatively

for different speeds of -.he special puz.cse prccessors in the case t4nen -he
3ssem"s ar ~~~d(bu-c are not rultitasked).

!ti is dffer ent .o mcdel multiprccessor systems wih multitasking in

general. We discuss a pprobabiliszic re.resentamion of job s':-ctures and
general queueig nett-rk ndel for systems wizh multi-asking. The model

may be used in sitmlation studies buz is, unfortunately, anAlytically W.-
-,_czabie. We purpose here to use a MN'm queueing system with b-.ulk arvival
as an approxizra-e mdel of systcems Ath ul-itasking. The performance of
multiDrocessor systems and without amiitas?:ng re comared with an

IZ

uniprocessor system with equal capability. Our results confirm that multi-

tasking improves the perforaance of multiprocessor system when the degee

of concurrency in jobs it large enough,

r

5,*

p,

-25-

REFERMCES

C 1) Enslow P.H. Jr., "Multiprocessor Organization - a survey",
ACM4 Ccmp. Surveys, Vol. 9, nO 1, 143x'h 1977.

E 2) Davis R.L., S. Zucker, C.M. Campbell, "A Building Block Approach
to Mutiprocessing"', Frcc. of Soring.-Joint Ccmouter Conference,
pp. 685-703t 1972.

C3] N'.Lf W.A., C.G. Bell, "C.rrnp - A multi-miniprocestor", Frcc. of
Fall Joint Ccmputer Conference, pp. 765-4777, 1972.

C 41) Baskin H.B., B.R. Borgerson, R. Roberts, "PRDS- A mdulon Archi-
tecture for Termiral Oriented Systems", ;Ioc. of Spring Joint
Computer Cornf., Vol. '40, pp. '431-1437, 197-.

£ 3) Coffihn E.G.Jr., ?0. Denning, "Theorey of Operating Systems" , John
Wiley and Sons, 1975.

r 6) Liu J.W.S, C.L. Liu, "Perforrance anal sis of multiprocessor system
containing fuinc-.ionally dedicazed processor", Depart. of computer
Science, University of, I'llinois .at Urbana, Champa4g, TIR rjICS-R-
835, 1977.

C 7] QG:%i'an R. L., "Bounds on .dt-iprccessing timing anrrnalies", SIM J.
Applied Math.$ Vol. 17, 1 2,1 196.

1 8) tara D.G., V.Y. Shen, "Scheduling Idependen, P.-ocessors with
Differentc Storage Capabilizies", troc. 4A:I Nati-onal Con.ference,
pp. 161-166, 19714.

S91 Kleinr-cck L,-., "Cueueing Sysitems", 7Id. !, Theorl, John Wiley and
-ors, 1975.

YaraakiH. 'Trform-rnce Evaluaicn of mulitiprrocessor Syscems",
Techn. repor u-TCBCS?.-77-891, Depa.-rment of Ccrtptter Scie, Uni-
ve-st of 04S~i a,_ Urbana - Chrampa-Ign.

I11 Sauer C.H. amrl K.M. Clhandy, "ThIe Intact of aiti~i n ~cdsiine
on ?-lt ..e-ccessors Svsces Ccan._f__G__ol_2,NO!___.199

C 12) Fuller S.M. , J. K. r.iszerhcixt, L. Paskin, P etc al., 'ht-irccesr

C13] Mivlazaki N., "Aerrfzrrce aralvsis of nmuliorccesscr sys-em-s wi:]"
-a~asking", 'Is Thesis, Zepai-tne.t of *Ccmr.ter Science, Universit-y

of ~~'~~~ois at rana, hmig, 9.

3.?ypC Itll~ P40CESSORS
I ?~(3.11

.-* ...
I ?VPC (3,Z1

..

I ?TVP((3.3)

IAn -maftu~t.ZfocessorS IA

(oce I

-27-

iob ~arrivaIls co~on queue 2-

tasks

Fipr A sjte I4,rl qetlecL parpose~ zeoc~emrs

44

htqueue

k"Proc r

/C~ er

~ob a5ivac.s

70

60

50

4U

Jo I. " '

20 US T(C. .2)

10 Ws (C-1.5)

(r z= , m a 1 0Op

0.7 0.75 0.8 0.9 0.95 c C .)

w "s (Ct)

Wg

30 /° /

20

w s (c 1 .5) ,1 -a . ,s

,,- S (C=2) , r

LA S dpen dent~ As)

0.7 0.8 0.9 0.95

-29-

w(C-1) Wg

35 ws(C.. 2)

30

20

10 (cs 5

0.7 0.8 0.9 0.95

Figure ~ gand W7, under Heavily Loaded Condition

qecO.Z Vt.rnos5i -PrOcCS5

30

4task ienercittri
t.13*) task Synch..rz-ati~r.

.3)A vx%#"~cal t-od e ' 3 *

l-'sppeai~nztas

NOV~l"nia'zn=ce -fz o

n =deL :)

f ! 1b

""task ge~eti-on
-)a task s~nciacizai-or.

ir) a pr~ical m-:de' -. i job

.- ~ appe~L~;tasi

Nio vyc -:niazo =cdel -)f a a~o

Ful =el-:a .o

-- Zurs~I (0J4 -t.,,-Z

kr. :.6cCente o ;,eer. cetork e

~'~I~e ?rcessors

o~
A c -rs-6r --. l tg0-

0 4I

-sre

1 4

Tl 0

U)NI

r-4I .-

4) 0

H I U) 4

0) 1U
-~ I '1

o U) -U E-1

~41 Q

4.1

4p.4

14
r4 CAP

4.'A

-ld
4 01

- Co

4.)0
o -. ~-4

14. .9.,E-4

